Anh Le-Tuan Pham, Ph.D.

Assistant Professor, Department of Civil and Environmental Engineering Carleton University, 2368 MacKenzie Building, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada Phone: 1-613-520-2600 (ext. 2984); Email: a.pham@carleton.ca

Education

University of California, Berkeley Ph.D. in Civil and Environmental Engineering (2012)

Dissertation Supervisors: David L. Sedlak (Civil and Environmental Engineering), Fiona M. Doyle (Materials Science and Engineering)

Dissertation title: "Activation of hydrogen peroxide by iron-containing minerals and catalysts in circumneutral pH solutions: implications for *ex situ* and *in situ* treatment of contaminated waters and soils"

Minors: Surface and colloid chemistry, materials science and engineering

University of California, Berkeley M.S. in Civil and Environmental Engineering (2007)

Hanoi University of Technology B.S. in Chemical Engineering (2005)

Appointments

Carleton University, Ottawa, ON, Canada Assistant Professor (01/2015 – present)

Department of Civil and Environmental Engineering

Duke University, Durham, NC, USA Postdoctoral Associate (08/2012 – 12/2014)

Prof. Heileen Hsu-Kim group, Department of Civil and Environmental Engineering

Research: (1) Biogeochemistry of mercury in anoxic settings; (2) Detection, speciation, and biotransformation of trace elements and nanoparticles

Teaching

University of California, Berkeley

Graduate Student Instructor (CE115: Water Chemistry)

Honors and awards

Graduate student award, Division of Environmental Chemistry, American Chemical Society (2012)

Vietnam Education Foundation Fellowship (2006 – 2008)

Professional service

Reviewer for Environmental Science and Technology (American Chemical Society publication) and other Scientific Journals (approximately 30 reviews in past 5 years); Grant reviewer for American Association for the Advancement of Science (AAAS)

Peer reviewed publications

- **Pham A.L.T.**, Johnson. C, Manley D., Hsu-Kim., Influence of nanoscale sulfide minerals on the performance of diffusive gradients in thin films (DGT) passive samplers: implications for monitoring for chalcogenic metals in sulfidic sediments. (*in preparation*).
- **Pham A.L.T.**, Doyle F.M., Sedlak D.L., Size exclusion and oxidation of organic compounds in an iron oxide-containing SBA15 hydrogen peroxide system: minimizing hydroxyl radical consumption by non-target compounds (*A chapter from PhD dissertation. To be submitted for journal publication*).
- **Pham A.L.T.**, Morris A., Zhang T., Ticknor J., Levard C., Hsu-Kim H., Precipitation of nanoscale mercuric sulfides in the presence of natural organic matter: structural properties, aggregation, and biotransformation, *Geochim. Cosmochim. Acta.* 2014, 133, 204-215. <u>DOI:</u> 10.1016/j.gca.2014.02.027
- **Pham A.L.T.**, Doyle F.M., Sedlak D.L., Kinetics and efficiency of H₂O₂ activation by iron-containing minerals and aquifer materials, *Water Research*. 2012, 6454-6462. DOI: 10.1016/j.watres.2012.09.020
- **Pham A.L.T.**, Sedlak D.L., Doyle F.M., Dissolution of mesoporous silica supports in aqueous solutions: implications for mesoporous silica-based water treatment processes, *Appl. Catal.B: Environ.* 2012, 126, 258-264. DOI: 10.1016/j.apcatb.2012.07.018
- **Pham A.L.T.**, Doyle F.M., Sedlak D.L., Inhibitory effect of dissolved silica on H₂O₂ decomposition by iron(III) and manganese(IV) oxides: implications for H₂O₂-based in situ chemical oxidation, *Environ. Sci. Technol.* 2012, 46, 1055-1062. DOI: 10.1021/es203612d
- **Pham A.L.T.**, Sedlak D.L., Doyle F.M., Production of oxidizing intermediates during corrosion of iron: implications for remediation of contaminants from mineral and metal processing, *ECS Transactions*, 2010, 28, 117-127. DOI: 10.1149/1.3367907
- **Pham A.L.T.**, Doyle F.M., Sedlak D.L., A silica-containing iron oxide catalyst capable of activating hydrogen peroxide at neutral pH values. *Environ. Sci. Technol.* 2009, 43, 8930-8935. DOI: 10.1021/es902296k

Selected conference presentations and posters

Pham A.L.T., Morris A., Zhang T., Liu Y., Hsu-Kim H., Structural properties of nanoscale mercury sulfides: implications for microbial bioavailability and biotransformation, Association

- of Environmental Engineering and Science Professor 50th anniversary conference, Colorado School of Mines, CO, US, July 2013. (platform)
- **Pham A.L.T.**, Doyle F.M., Sedlak D.L., Hydrogen peroxide activation by iron minerals for soil and groundwater treatment, Gordon Research Conference on Environmental Sciences: Water. Holderness School, NH, US, June 2012. (poster)
- **Pham A.L.T.**, Doyle F.M., Sedlak D.L., Dissolution and transformation of mesoporous silicas: kinetics and implications, International Water Association Conference: Nano and Water, Ascona, Switzerland, May 2011. (platform)
- **Pham A.L.T.**, Doyle F.M., Sedlak D.L., Iron-containing clays as catalyst in heterogeneous Fenton reaction: role of structural and surface iron, American Chemical Society National Meeting, Anaheim, CA, US, March 2011. (platform)
- **Pham A.L.T.**, Doyle F.M., Sedlak D.L., Size exclusion and oxidation of organic compounds in an iron oxide-containing SBA15 hydrogen peroxide system: minimizing hydroxyl radical consumption by non-target compounds, Gordon Research Conference on Environmental Sciences: Water. Holderness School, NH, US, June 2010. (poster)
- **Pham A.L.T.**, Doyle F.M., Sedlak D.L., Activation of hydrogen peroxide at neutral pH values by iron- and alumina-containing mesoporous SBA-15 silica, American Chemical Society National Meeting, San Francisco, CA, US, March 2010. (platform)
- **Pham A.L.T.**, Lee C., Keenan C.R., Doyle F.M., Sedlak D.L., Development of an iron-containing catalyst for the remediation of recalcitrant organic contaminants, Superfund Research Program Annual Meeting, Pacific Grove, CA, US, December 2008. (poster)

Invited seminars (partial list)

Formation and dissolution of nanoscale mercuric sulfides: implications for microbial bioavailability and biotransformation, Virginia Tech, October 2014.

Iron and mercury: surface-water interfacial processes and contaminants transformation, University of Minnesota, March 2014.

Iron and mercury: surface-water interfacial processes and contaminants transformation, McMaster University, Ontario, Canada, February 2014.

Iron and mercury: surface-water interfacial processes and contaminants transformation, Carleton University, Ontario, Canada, November 2013.

Iron and mercury: surface-water interfacial processes and contaminants transformation, University of Missouri Columbia, May 2013.

Hydrogen peroxide activation by iron oxides for soil and water treatment, University of California, Riverside, March 2012.

Iron-containing catalysts for activation of hydrogen peroxide at circumneutral pH values. Department of Civil and Environmental Engineering, Rice University, November 2011.

Mesoporous silica materials for water remediation: The Good, the Bad and the Ugly. Swiss Federal Institute of Aquatic Science and Technology (Eawag), May 2011.